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We study the chaotic scattering through an Aharonov-Bohm ring containing two cavities. One of the cavities
has well-separated resonant levels while the other is chaotic, and is treated by random matrix theory. The
conductance through the ring is calculated analytically using the supersymmetry method and the quantum
fluctuation effects are numerically investigated in detail. We find that the conductance is determined by the
competition between the mean and fluctuation parts. The dephasing effect acts on the fluctuation part only. The
Breit-Wigner resonant peak is changed to an antiresonance by increasing the ratio of the level broadening to
the mean level spacing of the random cavity, and the asymmetric Fano form turns into a symmetric one. For
the orthogonal and symplectic ensembles, the period of the Aharonov-Bohm oscillations is half of that for
regular systems. The conductance distribution function becomes independent of the ensembles at the resonant
point, which can be understood by the mode-locking mechanism. We also discuss the relation of our results to
the random walk problem.
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I. INTRODUCTION

Starting from the study of atomic nuclei, chaotic scatter-
ing has been a topic of intensive research in a large variety of
systems such as atoms, molecules, quantum devices, and mi-
crowave cavities �1�. A fundamental question to be asked is
how much information is reflected in the scattering through
random media such as disordered and classically chaotic sys-
tems. One of the most remarkable and promising ideas is to
introduce the statistical concept into the analysis. The en-
semble average over different realizations of the sample is
considered to calculate several statistical quantities. A large
number of systems exhibit universal behavior determined by
the symmetry of the systems. For this situation, random ma-
trix theory �RMT� �2–4� has been used to understand the
result and has played an important role as a standard analyti-
cal tool.

Recently, the experimental stage of the chaotic scattering
has been shifted from natural to artificial systems. Typical
examples are mesoscopic systems �5–9� such as quantum
dots �QDs� and disordered wires. Recent development of
nanotechnology makes it possible to fabricate mesoscopic
quantum hybrid systems that could not be realized before
and a lot of interesting interference phenomena have been
observed under controllable external parameters. Due to the
interference of wave functions, a system made from parts
such as the QD, lead, and quantum point contact cannot be
treated separately. Such systems show new interesting phe-
nomena which are absent in single isolated systems. Typical
experimentally fabricated systems are the QD on the
Aharonov-Bohm �AB� ring �10�, the side-coupled QD �11�,
and so on.

The model treated in this paper is two QDs put on the two
arms of the AB ring. In this so-called “mesoscopic double
slit system,” a lot of interesting phenomena such as the AB
oscillations and the Fano effects can be observed by the in-
terference of wave functions transmitting through the two

arms �12–15�. In the context of chaotic scattering, it is inter-
esting to apply the known analysis based on RMT �16–23� to
the AB ring system. We study how the interference effects
appear and the conductance behaves as the function of the
controllable parameter such as the magnetic flux through the
ring.

Our formulation is rather general and the application of
our result is not limited to the QD systems. It is known that
microwaves in an irregular shaped cavity behave chaotically
and the statistical properties can be described by RMT
�24,25�. Based on the formal analogy between the Helmholtz
and Schrödinger equations, the classical waves are simulated
as quantum mechanical wave functions. Compared with the
mesoscopic systems in nanoscale, the cavity system is easier
to fabricate and is ideal for an experimental study. We can
also observe the Fano effect in this system �26�.

How can we define the statistical model for the hybrid
system? For the system of two QDs attached to each arm of
the AB ring, Gefen et al. �12� considered the case when each
dot has a single regular level. As a simple but nontrivial
extension, we treat the case when one of the dots has regular
levels and the other has random levels. RMT is applied to the
random dot.

This model can be viewed as a mixed system of chaotic
and integrable levels. In single dot systems, such structure is
employed as an idea to explain anomalous phenomena such
as critical statistics �27� and fractal conductance �28�. It is
known in the open QD system that the several specific levels
couple with the lead strongly while the other levels couple
weakly via strong coupled levels �29�. Thus it is too simple
to treat the dot as a single random matrix and we need to
consider the internal structure more seriously. Although our
model is not directly related to such phenomena, it is instruc-
tive and useful to consider the present ring system as the
situation where the strong and weak couplings coexist. In
this system, the regular transmission in the one arm is af-
fected by the random ones in the other arm, and vice versa.
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From a point view of RMT, special attention is paid to the
universality of the statistical quantities. A natural question to
be asked in the present model is how the universal level
correlations described by RMT are modified by the regular
contribution. Naive expectation is that the effect of the regu-
lar levels can be safely removed by the proper scaling �un-
folding� �30�. It is known that the effective theory is written
in terms not of the microscopic parameters but of the trans-
mission coefficients �16�. However, in the present system,
the effect is amplified by multiple scatterings through the
ring and gives highly nontrivial results.

Now that our model has been described, we must refer to
the work by Clerk et al. �31�. They considered many reso-
nant levels in a single dot and RMT was employed for their
distribution. The regular component to the S matrix express-
ing the direct nonresonant path through the dot was used to
find the Fano resonances. For each resonance, the Fano pa-
rameter q was calculated and the statistical distribution of q
was defined over the resonances. On the other hand, in our
case, only the single resonant level is present regularly and it
is affected by random levels. Thus our attention is fixed on
the single regular resonance. To discuss the statistical prop-
erties of the transport we must prepare different realizations
of the random dot. The ensemble average is defined in terms
of such realizations.

The outline of this paper is the following. The AB ring
model is defined in Sec. II. We define the random Hamil-
tonian model in Sec. II A. A model based on the random S
matrix is also defined in Sec. II B and the relation to the
random Hamiltonian model is discussed. In Sec. III, we cal-
culate the average of the S matrix based on the random
Hamiltonian model. As a result the mean part of the conduc-
tance is calculated. It is not enough to calculate the conduc-
tance including the quantum fluctuation effect and we de-
velop the supersymmetry method �32� in Sec. IV A to
calculate the full conductance. The results of the conduc-
tance are shown in Sec. IV B. We also study the AB oscilla-
tions in Sec. IV C and the Fano effect in Sec. IV D. The
fluctuation effects can be best seen in the conductance distri-
bution functions, which are studied in Sec. V. Since realistic
situations are not ideal and phase breaking effect is present
�25,33�, it is important to consider the dephasing effect theo-
retically. We consider it in Sec. VI using a simple imaginary-
potential model. Section VII is devoted to discussions and
conclusions. Part of the results were published in a prelimi-
nary report �34�.

II. MODEL

A. Random Hamiltonian approach

We consider the AB ring system depicted in Fig. 1. The
upper dot �dot 1� has a single resonant level, and the lower
dot �dot 2� has random levels and is treated by RMT.

It is known from scattering theory that the S matrix of the
system is written as �6,7,16,23�

S = 1 − 2�iw† 1

E − H + i�ww†w =
1 − i�w†�1/�E+ − H��w
1 + i�w†�1/�E+ − H��w

,

�1�

where H denotes the Hamiltonian matrix for dots and w the
dot-lead coupling matrix. H can be written as

H = �E1 0

0 H2
� , �2�

where E1 is the fixed energy level for the dot 1 and H2 is the
random Hamiltonian for the dot 2. The size of H2, N, is taken
to be infinity to find the universal result. We note that the
total size of H is 1+N. It is a straightforward task to extend
the size of the upper dot Hamiltonian to arbitrary values and
here we consider the minimal size 1. As another simplifica-
tion, we consider the 2�2 �unitary� matrix S, which means
that the left and right leads have a single channel, respec-
tively. It is believed that the quantum interference effect be-
comes maximal in this case �35�. Then the dot-lead coupling
matrix w is the �1+N��2 matrix and can be written as

w = �w�1�

w�2� � = �w�1L� w�1R�

w�2L� w�2R� � =�
w�1L� w�1R�

w1
�2L� w1

�2R�

w2
�2L� w2

�2R�

] ]

wN
�2L� wN

�2R�
� , �3�

where �1L� refers to the coupling between dot 1 and lead L,
and so on.

The conductance measures the transmission from the left
to right lead and is defined by �6,7,16�

g = 	
S12
2� , �4�

where 	 � denotes the ensemble averaging of the random
Hamiltonian H2. We employ the Gaussian ensemble �3� and
the probability density is given by

P�H� = C exp�−
�2

2N�2 trH2� , �5�

where � is the mean level spacing, and C is the normaliza-
tion constant. In the following calculations, we mainly con-
sider unitary symmetry, which means that H2 is Hermitian
and no additional condition is imposed.

The result of the conductance depends on the choice of
the dot-lead coupling w. Although this matrix w has 4N de-
gree of freedom, there is no need to specify them completely.
After the averaging, the effective degrees of freedom be-
comes finite. Generally, it is 6 and we restrict our discussion
to the special case of 4 �see below�.

FIG. 1. Schematic drawing of our model. Dot 1 with a resonant
level E1 and dot 2 with a random Hamiltonian H2 are connected by
leads. w denotes a dot-lead coupling matrix.
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B. Random S matrix approach

Equation �1� is a useful formula to relate the Hamiltonian
to the S matrix and can be used for the present coupled
system. It is convenient to express the S matrix in terms of
the K matrix defined by

S =
1 − iK

1 + iK
. �6�

K is expressed as the sum of contributions from dots 1 and 2:

K = K1 + K2,

K = �w† 1

E+ − H
w ,

K1 =
�w�1�†w�1�

E+ − E1
, K2 = �w�2�† 1

E+ − H2
w�2�. �7�

This simple relation implies the sum rule of the S matrix

1 − S

1 + S
=

1 − S1

1 + S1
+

1 − S2

1 + S2
, �8�

where S1 �S2� is the S matrix for dot 1 �2�. It is instructive
and useful in the following numerical calculations to derive
the explicit representation using the matrix elements. Defin-
ing each S matrix elements as

S = �r t�

t r�
�, Si = �ri ti�

ti ri�
� �i = 1,2� , �9�

we obtain, for example,

t = 4�t1�1 + s2 + r2 + r2�� + t2�1 + s1 + r1 + r1���

� �9 + 3�r1 + r1� + r2 + r2�� + s1 + s2

− 3�r1r2 + r1�r2�� + �r1r2� + r2r1�� − 4�t1t2� + t2t1��

− �r1 + r1��s2 − �r2 + r2��s1 + s1s2�−1, �10�

where si=det Si=riri�− titi� �i=1,2�. Thus the total transmis-
sion t is not equal to t1+ t2, rather including nonlinear effects
due to multiple scattering through the ring. Such multiple
scattering effects are put together with interference due to
random scattering and give highly nontrivial results for the
conductance g= 	
t
2�.

Another way of representing the total S matrix is to sepa-
rate the S matrix of the system into the upper and lower dot
parts and the left and right fork parts �12,13�. Choosing the
fork matrices in a proper way, we can find the same expres-
sion of t as in Eq. �10�.

The conductance can be calculated by taking the en-
semble average over S2 determined by the random Hamil-
tonian H2. Instead of doing that, we may disregard the de-
tailed structure of S2 and impose randomness directly on S2,
simulated by the circular ensembles �3�. It is well known that
the random S matrix approach is equivalent to the random
Hamiltonian approach if we use the Poisson kernel �17�

P��S�d���S� �
1


det�1 − S	S�†�
2�+2−�d���S� , �11�

where d���S� denotes the invariant measure for the S matrix
and is used as the measure for the circular ensemble. � is the
index for the universality class. �=1, 2, and 4 for the unitary,
orthogonal, and symplectic case, respectively. 	S� is the av-
eraged value of S which is treated as an input parameter and
is determined by the random Hamiltonian model. The total S
matrix is constructed by the sum rule �8� and the conduc-
tance is expressed by 
t
2 where t is given by Eq. �10�. By
taking the circular ensemble average with the weight P��S2�,
we obtain the conductance g which is the same as that ob-
tained by the random Hamiltonian approach. The equiva-
lence of both approaches was shown in Ref. �22�. The ran-
dom S matrix approach has a great advantage for numerical
calculations because there is no need to take the thermody-
namic limit N→� and one may consider 2�2 random ma-
trices S2.

Alternatively, we can parametrize the S matrix in terms of
the K matrix �7�. Then the expression of the conductance
becomes much simpler than Eq. �10� as we show in Sec. V.
The disadvantage of this parametrization is that the K matrix
is Hermitian and the matrix elements are not compact, which
is inconvenient for the numerical calculation. Thus we em-
ploy the S matrix parametrization �10� with compact vari-
ables for most of the numerical calculations.

III. AVERAGED S MATRIX

As we have shown in Eq. �7�, the K matrix is written as
the sum of the regular �dot 1� and random �dot 2� parts. Thus,
to get the averaged K matrix, we may consider the ensemble
averaging of the random part. We know from RMT that the
averaged Green function for Gaussian unitary ensemble is
given by �3�

� 1

E+ − H2
 =

�

N�
e−iz, �12�

where

cos z =
�E

2N�
. �13�

N is taken to be infinity while E /� is kept finite. Then we
have e−iz→−i and the averaged K matrix is given by

	K� =
1

E+ − E1
	1 −

i�

N�
	2, �14�

where 	i=�w�i�†w�i� �i=1,2�. It is important to note that the
result depends on the dot-lead couplings w�1,2� through 	1,2.

For the regular dot, the most general form of 	1 is

	1 = ��w�1L�*w�1L� �w�1L�*w�1R�

�w�1R�*w�1L� �w�1R�*w�1R� �
=

1

2
� 
1L �
1L
1Re−i�

�
1R
1Lei� 
1R
� , �15�

where 
1L �
1R� turns out to be the level width for the left
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�right� coupling of the dot to the lead and � is a phase. We
assume the symmetric coupling 
1L=
1R for simplicity and
use

	1 = 
1� , �16�

where

� =
1

2
� 1 e−i�

ei� 1
� . �17�

This matrix satisfies �2=� and is diagonalized as �
→diag�0,1�.

On the other hand, for the random dot, the form of 	2 is
slightly complicated. It is written as

	2 = ��w�2L�†w�2L� �w�2L�†w�2R�

�w�2R�†w�2L� �w�2R�†w�2R� � . �18�

Since w�2L� and w�2R� are N�1 matrices, we see that the
relation 
w�2L�†w�2L�

w�2R�†w�2R�
 
w�2L�†w�2R�

w�2R�†w�2L�

holds. The equal sign holds when w�2L�=w�2R� or N=1, the
latter is the case for w�1�. Thus we need the additional pa-
rameter for the parametrization of 	2. Assuming the symme-
try of the left and right coupling again, we obtain the form
with the level width 
2 as

	2 =
N
2

2
� 1 aei�

ae−i� 1
� . �19�

The parameter a reflects the above mentioned inequality and
0�a�1. We note that the same phase � appears in 	1 and
	2, but the sign is opposite to each other. This phase affects
the transmission part of the S matrix and can be identified
with the AB flux through the ring �12,13�.

Using this parametrization, we can write

	K� =
1

�
� −

iX

2
� 1 aei�

ae−i� 1
� , �20�

where

� =
E − E1


1
, X =

�
2

�
. �21�

The energy � represents the distance from the resonance
point and X is the ratio of the level width to the mean level
spacing of the dot 2. Thus this model is described by four
parameters �, X, a, and �.

For the random dot, the elements of the dot-lead coupling
w�2� distribute randomly and the summation �i=1

N wi
�2L�*wi

�2R�

can be small when the random phases of w�2L� and w�2R�

almost cancel out. This means a is vanishingly small. On the
other hand, the summation can be finite when the left and
right dot-lead couplings are correlated mutually. This results
in direct nonresonant reaction �16�. We first discuss the case
of a=0 for simplicity. The averaged K matrix takes the form

	K� =
1

�
� −

iX

2
. �22�

The finite-a effect is discussed afterwards.
Now we go back to the S matrix. The averaged S matrix is

simply obtained by using the averaged K matrix,

	S� =
1 − 	K�
1 + 	K�

=
1 − X/2

1 + X/2
−

2i

�1 + X/2���1 + X/2�� + i�
� .

�23�

This is justified by the saddle-point analysis of the nonlinear
sigma model described below. We define g0= 
	S12�
2, which
is the conductance if we can disregard the quantum fluctua-
tions. It is given by

g0 =
1

�1 + X/2�2

�
1/�1 + X/2��2

�E − E1�2 + �
1/�1 + X/2��2 . �24�

The result shows that the level width 
1 for the dot 1 and the
conductance are renormalized by the factor 1 / �1+X /2�.

For later use, we define the transmission coefficients as

T = 1 − 	S�	S�†

=
2X

�1 + X/2�2 −
2X

�1 + X/2�2

�
2/�1 + X/2��2

�E − E1�2 + �
2/�1 + X/2��2� .

�25�

This matrix can be diagonalized to find the eigenvalues

T1 =
2X

�1 + X/2�2 , T2 =
2X

�1 + X/2�2 + 1/�2 . �26�

Note that 0�T2�T1, T2=T1 at 
E−E1
→�, and T2=0 at
E=E1. At X=2, T1 takes the maximum value, T1=1, and the
transmission through the random dot becomes ideal.

In conclusion of this section, we found the averaged S
matrix �23� and the conductance �24�. Of course, this is not
the final result of the averaged conductance. We just calcu-
lated the mean part g0= 
	S12�
2 which is different from the
original definition �4�. We must examine the fluctuation part
�g=g−g0= 	
S12
2�− 
	S12�
2.

IV. CONDUCTANCE

A. Supersymmetry method

We derive the nonlinear sigma model for the coupled sys-
tem to calculate the fluctuation part of the conductance. Ac-
cording to the supersymmetry method �16,32�, the generating
function for the product of Green functions G�E�=1/ �E−H
+ i�ww†� and G†�E� is defined by

Z =� D��̄,��exp�i�̄�E + i��ww† − H��� , �27�

where � has 4�1+N� components coming from supersymme-
try �bosons and fermions�, retarded-advanced structure, and
Hamiltonian space. �=diag�1,−1� in retarded-advanced
space. Following the standard procedure, we introduce the
Hubbard-Stratonovitch field Q to write the averaged gener-
ating function as
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	Z� =� DQ exp�− str4�1+N� ln�E + i��ww†

− �E1 0

0
N�

�
Q �� −

1

2
str4Q2� , �28�

where Q is a 4�4 supermatrix. “str” denotes supertrace and
the subscript indicates the size of superspace. When w=0,
the saddle-point equation is written down as

Q =
N�

�

1

E+ − �N�/��Q
. �29�

This is easily solved with the proper boundary condition as

Q = e−iz� =
�E

2N�
− i��1 − � �E

2N�
�2

→ − i� , �30�

where we took the limit N→� keeping E /� finite. As a
general solution including the saddle-point manifold, we can
write

Q = − i�, � = V�V̄ , �31�

where V is the 4�4 supermatrix and satisfies VV̄=1. The
symmetry of V is determined in the standard way �32�.

Now the generating function reads

	Z� =� D�e−F,

F = str4�1+N� ln�1 +�
1

E − E1
0

0
�

N�
Q�i��ww†�

= str8 ln�1 + i�� 1

E − E1
	1 −

i�

N�
	2��� , �32�

where we assumed 	1=
1� and 	2=N
2 /2. Since the ma-
trix sizes of � and 	 are 4 and 2, respectively, the total size
of the superspace in the last expression is 8. We finally ob-
tain

F = str8 ln�1 + i�1

�
� −

iX

2
����

=
1

2
str8 ln�1 +

T/2

1 − T/2

�� + ��

2
� . �33�

The nonlinear sigma model �33� can be written in terms of
the transmission matrix T �25� and the microscopic funda-
mental parameter X does not appear in the expression explic-
itly. This is a manifestation of the universality �3,4,16�.

Equation �33� is for systems with unitary symmetry. In the
same way we can derive the nonlinear sigma models for the
orthogonal and symplectic symmetry classes. Then � be-
comes an 8�8 supermatrix and the additional symmetry due
to time-reversal invariance is imposed �32�.

B. Conductance

In the nonlinear sigma model approach, the averaged con-
ductance is calculated by performing the integration of the �
matrix. The mean part of the conductance g0 in Eq. �24� is
easily obtained by neglecting the fluctuation of the � matrix
as �=�. To find the fluctuation part of the conductance �g
= 	
S12
2�− 
	S12�
2, we must take into account the contribution
from the saddle-point manifold parametrized by the V ma-
trix. This calculation is highly complicated and we refer to
the Appendix for details. We finally obtain

�g =
T1 + T2

4
− �1 − X2/4

2X
��1 − X2/4 − 1/�2

2X
�

� � T1T2

T1 − T2
�2�T1 + T2

2
− � T1T2

T1 − T2
�ln

T1

T2
� , �34�

where T1,2 are the eigenvalues of the transmission matrix T
given by Eq. �26�.

We first examine the two limiting cases, 
�
→� and �
=0. The limit 
�
→� means that dot 1 is detached from the
system and the S matrix is given by S1=1. In this case, T1
=T2=2X / �1+X /2�2 and we recover the known result �36�

�g =
T1

3
+

T1
2

6
. �35�

In the other limit �=0 �E=E1� the energy coincides with the
level in dot 1 and the perfect transmission through dot 1 is
achieved. Then T2=0 and we obtain

�g =
T1

4
. �36�

We see that Eq. �35� is larger than Eq. �36�, which means that
the fluctuation effects are reduced as we approach the reso-
nant point. For intermediate values of �, Eq. �34� cannot be
written in terms of T1,2 only in contrast to Eqs. �35� and �36�.
This is because the source term to calculate the conductance
depends on � and X explicitly, although the nonlinear sigma
model itself can be written in terms of T, as shown in the
Appendix.

These results are checked by numerical calculations. We
use the formula �10� for the transmission matrix. S1 is given
by S1= �1− iK1� / �1+ iK1� with K1=� /�, and the random S
matrix S2 is treated statistically by using the Poisson kernel
�11�. We take the ensemble average over more than 106

samples of the S matrix.
In Fig. 2, X dependence of the conductance is shown for

several values of �. g0 shows a peak at X=0 while �g takes a
maximum at X=2 as shown by the thin lines and the inset in
Fig. 2, respectively. As �→� g0 ��g� is monotonically de-
creasing �increasing� and the result rapidly approaches Eq.
�35�. The numerical result agrees with Eq. �34� in a highly
accurate way, which shows the equivalence of the random
Hamiltonian and random S matrix approach.

� dependence of the conductance is shown in Fig. 3. A
resonance peak appears at �=0, reflecting transport through
the regular dot 1. This peak structure, however, changes
qualitatively as a function of X. For small X the peak is
convex and the peak height decreases on increasing X. When
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X=2, g is independent of �. Increasing X further, we find that
the peak turns into an antiresonance and g decreases mono-
tonically. The result for X=2 corresponds to that of the cir-
cular unitary ensemble because 	S2�=0, and the Poisson ker-
nel P��S2� becomes unity. As we see in the inset of Fig. 3, �g
at the resonant point is relatively small and the quantum
fluctuation effect smooths the resonance.

For comparison we calculate g as a function of � for the
orthogonal and symplectic ensembles numerically. For the
orthogonal case, the Hamiltonian has time-reversal invari-
ance and the matrix elements are real. For symplectic, the
Hamiltonian becomes a quaternion real matrix �3�. The re-
sults are shown in Fig. 4. When 0�X�2, the resonance is
enhanced �reduced� for the orthogonal �symplectic� en-
sembles. At X=2, the orthogonal ensemble gives a resonance
while the symplectic ensemble gives an antiresonance. When
X=10, we see that antiresonance is reduced �enhanced� for
the orthogonal �symplectic� ensemble in contrast to the case
of X�2.

Away from the resonance, the quantum fluctuation effect
becomes larger as the number of degrees of freedom of ran-
dom variables increases. We note that the number of degrees
becomes maximum when �=4 and minimum when �=1. We
can also see that the conductance at the resonant point is
independent of the choice of the ensemble. This result is
discussed in detail in Sec. V.

C. Aharonov-Bohm oscillations

For regular ring systems, it is well known that the AB
oscillations are observed by applying the magnetic flux

through the ring. Since the flux is a tunable parameter it is an
important method to control the system. Our interest is how
the effect of the AB flux can be observed in the present
random system. Can the AB oscillations survive after the
random averaging?

In systems with unitary symmetry, since the scattering in
the random dot randomizes the phase of the amplitude, the
result becomes independent of the AB phase �. This is not
the case for the orthogonal and symplectic systems and the
oscillations can be observed. However, the period of the os-
cillation is different from that for regular systems. This can
be understood from the expression of the transmission t in
Eq. �10�. The phase is included in that expression as

t =
At1ei� + Bt2e−i�

C − D�t1t2�e
2i� + t2t1�e

−2i��
, �37�

where A, B, C, and D are phase independent contributions. If
we neglect the multiple scattering effect the total transmis-
sion is approximated by t� t1ei�+ t2e−i�. Then the conduc-
tance is given by

g � 
t1ei� + t2e−i�
2 = 
t1
2 + 
t2
2 + t1t2
*e2i� + t1

*t2e−2i�.

�38�

We see that the third and fourth terms of the right hand side
give oscillations with the period �. However, these terms
vanish after the random averaging. The contributions going
around the ring twice give oscillations with the period � /2

FIG. 2. �Color online� Conductance vs X=�
2 /�. The thick
�thin� lines are analytical results of the total conductance g �mean
part g0�. Inset: Comparison of the analytical �denoted by lines� and
numerical �dots� results for the fluctuation part �g=g−g0.

FIG. 3. �Color online� Conductance vs �= �E−E1� /
1. The thick
�thin� lines are the total conductance g �the mean part g0�. Inset:
Fluctuation part �g=g−g0.

FIG. 4. �Color online� Numerical results of the conductance g���
for orthogonal and symplectic ensembles. The result for the sym-
plectic case is normalized to unity.

FIG. 5. �Color online� Conductance vs � for X=2. The lower
figure is for the orthogonal ensemble and upper for symplectic. No
oscillations are observed for the unitary case.
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and survive after the averaging. Such contributions come
from expanding the denominator. Thus, in the orthogonal and
symplectic systems, g depends on the AB phase due to the
multiple scattering inside the ring. The period of the AB
oscillations becomes half of that for the regular systems. This
effect can be interpreted as a kind of the Altshuler-Aronov-
Spivak effect �37� for cylinder systems. In a ring system, it
was discussed in Ref. �38� that the period of the oscillation
becomes half a flux quantum by the self-averaging effect.

We show the numerical results in Fig. 5 for the orthogonal
and symplectic ensembles. The period of the oscillations is

� /2 as we discussed above and the difference between these
two results is that the conductance becomes minimum �maxi-
mum� for orthogonal �symplectic� at �=0. This can be un-
derstood by the standard mechanism of weak localization
�39�.

D. Fano effect

The Fano effect is induced by the correlation of the reso-
nant and direct path �31,40�. The direct path can be described
by the parameter a in Eq. �19�. If we keep this parameter in
Eq. �20�, the averaged S matrix is given by

	S� =
1

�1 + ��1 + a�/2�X��1 + ��1 − a�/2�X� + �1 + ��1 − a cos 2��/2�X��i/��

��1 −
1 − a2

4
X2 −

1 − a cos 2�

2
X

i

�
−

i

�
e−i� − aXei�

−
i

�
ei� − aXe−i� 1 −

1 − a2

4
X2 −

1 − a cos 2�

2
X

i

�
� . �39�

The mean part of the conductance is derived from this expression as

g0 =
a2X2

�1 + ��1 + a�/2�X�2�1 + ��1 − a�/2�X�2

�

� − �1 + q
1
2

�E − E1�2 + �1 + ��1 − a cos 2��/2�X�2/�1 + ��1 + a�/2�X�2�1 + ��1 − a�/2�X�2
1
2 , �40�

where q is the Fano parameter

q =
ie2i�

aX
. �41�

Thus the Fano effect appears when a�0. The additional con-
dition ��0 is required to obtain a finite real part of q. Then
the asymmetric conductance form is obtained. At the limit

E−E1
→�, g0 has a finite contribution in contrast with Eq.
�24�. This means that there is a direct regular coupling be-
tween the left and right leads through the random dot.

This Fano effect also appears on �g. The numerical result
in Fig. 6 shows that the Fano parameter for �g is the same as
Eq. �41�. Since the antiresonance appears in �g as shown in
the inset of Fig. 3, the asymmetry is opposite to that of g0. As
a result, the total conductance becomes symmetric. This re-
sult means that the Fano effect appears not on g but on the
mean part g0 and the fluctuation part �g, respectively. We
note that the asymmetric form is obtained when Re q�0.
The effect of the imaginary part of q keeps the conductance
symmetric. We can conclude that the real part of the Fano
parameter does not affect the total conductance. We con-
firmed that the symmetric conductance is obtained for the
orthogonal and symplectic classes as well.

V. CONDUCTANCE DISTRIBUTION FUNCTIONS—
MODE-LOCKING EFFECT

In the previous section we focused on the averaged con-
ductance. It is well known that disordered systems show
strong fluctuation effects, which means that the square of the
conductance and even the higher moments become relevant

FIG. 6. �Color online� Conductance vs �= �E−E1� /
1 at a
=0.7 and �=−� /8. The thick �thin� lines are the total conductance
g �the mean part g0�. Inset: Fluctuation part �g=g−g0. The total
conductance g is obtained numerically and the mean part g0 is
plotted by using Eq. �40�.
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to characterize the system. To discuss the effects of the fluc-
tuations, here we calculate the conductance distribution func-
tion P�g�= 	��g− 
S12
2��. We show the analytical results
when �=0 which show universality among the ensembles.
We also report the numerical results.

The expression of the conductance distribution becomes
simpler if we use the K matrix representation as we men-
tioned in Sec. II B. K is a Hermite matrix and K=K1+K2
with

K1 =
1

2�
� 1 e−i�

ei� 1
�, K2 = � a1 bei�

b†e−i� a2
� . �42�

a1,2 are real, and b depends on the universality class and is
expressed as

b = �b0 for � = 1,

b0 + ib1 for � = 2,

b0 + b1e1 + b2e2 + b3e3 for � = 4,
� �43�

where b0,1,2,3 are real and e1,2,3 quaternion matrices defined
by ej = i� j with the Pauli matrix � j �j=1,2 ,3�. The conduc-
tance is expressed in this parametrization as

g =�
1 + 4b0� cos 2� + 4
b
2�2

�b0 cos 2� − �a1 + a2�/2 + �1 − a1a2 + 
b
2���2 + �1 + �a1 + a2���2 for � = 1,

1 + 4�b0� cos 2� − b1 sin 2�� + 4
b
2�2

�b0 cos 2� − b1 sin 2� − �a1 + a2�/2 + �1 − a1a2 + 
b
2���2 + �1 + �a1 + a2���2 for � = 2,

1

2
tr

1 + 4b0� cos 2� + 4
b
2�2

��b0 cos 2� − r�3 sin 2�� − �a1 + a2�/2 + �1 − a1a2 + 
b
2���2 + �1 + �a1 + a2���2 for � = 4,
� �44�

where 
b
2=�i=0
�−1bi

2 and r2=b1
2+b2

2+b3
2. We note that the con-

ductance for �=4 is normalized to unity. This expression is
averaged by the generalized circular ensemble �Poisson ker-
nel�,

P��S2�d���S2�

� � 1

�X/2 + �2/X��− a1a2 + 
b
2��2 + �a1 + a2�2���+2�/2

�da1da2�
i=0

�−1

dbi, �45�

where we used 	S2�= �1−X /2� / �1+X /2�. The numerical re-
sults using the Metropolis algorithm �41� are shown in Fig. 7
at �=0.

The results at large � are interpreted as the single random
dot case. This case was discussed in Ref. �18� using the
random Hamiltonian approach and the analytical result for
the unitary system was obtained. In the random S matrix
approach, the case of the perfect transmission X=2 was ob-
tained in Ref. �20� as

P�g� =
�

2
g−1+�/2, �46�

and other cases were discussed in Ref. �21�. The case of �
=10 is enough to find a large-� result and we find a good
agreement with their results.

In the case of �=1, we can clearly see how the random
dot significantly affects the distribution function. If we in-

crease X, a single peak at small X turns into a broad one and
a different peak around g=0 is formed at large X.

It is interesting to see the results at �=0 which are inde-
pendent of the choice of the ensemble. In this case, the con-
ductance distribution can be calculated analytically. The con-
ductance is written as

g =
1

1 + �b0 − �a1 + a2�/2�2 . �47�

and the distribution function is obtained from the expression

P�g� = C� da1da2�
i=0

�−1

dbi��g −
1

1 + �b0 − �a1 + a2�/2�2�
� � 1

�X/2 + �2/X��− a1a2 + 
b
2��2 + �a1 + a2�2���+2�/2

,

�48�

where C is the normalization constant. We perform the inte-
grals and obtain

P�g� =
1

��g�1 − g�
1

�2/X��1 − g� + �X/2�g
. �49�

This result agrees with the numerical ones in Fig. 7. The
reason why this result becomes independent of � can be
considered as follows. In Eq. �42�, all the matrix elements of
K1 are divergent at a=0. When �=0, this diverging term
belongs to the member of the orthogonal ensemble and af-
fects the variables a1,2 and b0 in the second term K2 which
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are common to all the ensembles. Then the effective modes
are locked on those for the orthogonal class and the conduc-
tance �47� becomes independent of the rest of the parameters
b1,2,3.

Equation �49� with X=2 appears in the problem of the
classical random walk �42� and is known as the arcsine law.
Consider the one-dimensional classical random walk starting

at the origin. The walker can move to either one of its two
nearest neighbor sites with the equal probability p=0.5. After
the N-step walk, we count the number of the events which
the walker was in the positive axis M. Then the distribution
function of g=M /N approaches Eq. �49� with X=2 as N
→�. It can be considered that the walker at the positive
�negative� direction corresponds to the transmission �reflec-
tion� to the left �right� lead in our model. Due to the presence
of the resonant path through the dot 1, a particle transmitted
through the dot 2 can go to either left or right lead with equal
probability. The particle reflected by the dot 2 can go either
way as well. Thus the particle entered from a lead forgets
where it came from. Such a process can be interpreted as a
random-walk-like one and gives the same distribution func-
tion. It is interesting that the asymmetric random walk with
the probability p�0.5 can be described by our model with
X�2. Since the analytic form is not known in the asymmet-
ric random walk, our result may be useful for understanding
the result. It is also known that the same distribution function
appears in the problem of the continuous-time quantum walk
�43�.

When the phase � is finite, K1 does not belong to the
member of the orthogonal ensemble and the results can de-
pend on the choice of the ensembles. We numerically found
that the orthogonal and unitary cases are independent of �
and the result �49� is kept unchanged. For the symplectic
case, we found that the result depends on � and Eq. �49�
does not maintain anymore. The numerical result for X=2
and �=0 is shown in Fig. 8. Remarkably, all plotted curves
give the averaged conductance g=0.5 and the phase depen-
dence appears only for the conductance fluctuations. We also
see that the plotted curves have a nonanalytic point at around
g=0.5, which implies a nontrivial mechanism due to the
phase coherent effect. It is not clear how this happens and
further study is needed to clarify the underlying mechanism.

VI. DEPHASING

In the Hamiltonian approach, the dephasing effect can be
modeled by introducing the imaginary part to the energy

� → � +
i

2�
. �50�

This method is equivalent with that of Ref. �18� where the
imaginary part of the Hamiltonian was introduced. In the

FIG. 7. �Color online� Ensemble dependence of the conductance
distribution functions at �=0. The curves at �=0 are well fitted by
the analytical result �49�.

FIG. 8. �Color online� Conductance distribution function of the
symplectic system for several values of �. We set X=2 and �=0.
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supersymmetry method, this effect can be described by the
additional term of the sigma model �18�

F� =
1

��
str �� . �51�

This term makes the massless “diffusion” modes on the
saddle-point manifold massive and reduces the quantum
fluctuations. See the Appendix for details.

It is well known in the S matrix approach that the dephas-
ing effect can be described by the Büttiker’s voltage probe
model �44�. A fictitious voltage probe eliminating the phase
coherence is attached to the dot and is described by an en-
larged S matrix.

Brouwer and Beenakker showed that the voltage-probe
model at a certain limit becomes equivalent to the imaginary-
potential model and found the modified Poisson kernel in the
random S matrix approach �35�. Here we investigate this
limit using the imaginary-potential model. Since the dephas-
ing effect to the regular dot is trivial, we include the effect in
the random dot only.

In Fig. 9, the numerical results of the conductance distri-
bution function using the random Hamiltonian model are
shown. We add the dephasing term, p=1/�� with the phe-
nomenological dephasing rate �, to the Hamiltonian. The ma-
trix elements of the dot-lead coupling w�2� are chosen ran-
domly so that there is no direct nonresonant reaction a=0.
The size of the random Hamiltonian is taken 102 and the
averaging over 105 samples is carried out.

As p increases, the curve transforms into a single peak
structure. The peak point corresponds to the mean part of the
conductance g0, which is close to zero for the upper graph
and 0.25 for the lower one. We can conclude that the dephas-
ing effect only affects the fluctuation part. We also confirmed
that our numerical result based on the random Hamiltonian
agrees with that of the random S matrix model in Ref. �35�.

VII. CONCLUSIONS

We have discussed an AB ring system with regular and
random cavities. We found that the quantum fluctuation ef-
fect plays an important and crucial role and significantly af-
fects the conductance. The main results are summarized as
follows: �i� The averaged conductance is divided into two
parts. The mean part has the Breit-Wigner resonant form
renormalized by random effects. The quantum fluctuation

part has an antiresonance form where the quantum effects
become minimal at the resonant point. �ii� For the orthogonal
and symplectic ensembles, the AB oscillations are found and
the period of the oscillations is half a flux quantum. The
positive �negative� magnetoconductance are obtained for the
orthogonal �symplectic� ensemble because of the multiple
reflections inside of the ring. �iii� Depending on the param-
eter choice, the Fano effect can be observed. This effect ap-
pears in the mean and fluctuation parts, respectively, and a
symmetric form is obtained for the total conductance. �iv�
The conductance distribution functions clearly show the in-
fluence of strong fluctuations. The distribution function at the
resonant point, Eq. �49�, does not depend on the choice of
the ensemble, which can be understood by the mode-locking
mechanism. The form of the distribution function implies a
relation to the random walk problem. �v� The dephasing ef-
fect simulated by the imaginary-potential model reduces the
fluctuation part only.

The result of the averaged conductance in Fig. 3 shows
that the total conductance as a function of the energy takes a
broad distribution. The form of the total conductance is de-
termined by the competition between the mean �24� and fluc-
tuation �34� parts. At large X we can observe the antireso-
nance.

Separating the mean and fluctuation parts is crucial to
understand the obtained result. For example the Fano effect
is found in both parts, while the total conductance, the sum
of them, becomes symmetric. We also found that the dephas-
ing effect suppresses the fluctuation part, which means that
the cancellation is incomplete and the asymmetric form can
be obtained in a system with dephasing.

The most striking result can be seen in the calculation of
the conductance distribution function. At the resonant point,
the effective modes of the K matrix in Eq. �42� are locked to
those for the orthogonal ensemble. Only the orthogonal
modes are amplified by the multiple scattering through the
ring and we can find the ensemble-insensitive result. This
result suggests a possibility of controlling the ensemble de-
pendence of random systems by the resonant singularity em-
bedded in the systems.

Our results for a coupled system show that the nontrivial
phenomena which are absent in the single system can be
observed in the hybrid system, which opens a new direction
for theoretical and experimental studies of chaotic scattering.
In this paper we only considered the regular-random coupled
system. It is interesting to see more complicated systems
such as a random-random system and triple coupled cavities,
and so on. A study of the series coupled random dot can be
seen, e.g., in Ref. �45�. To the best of our knowledge, there is
no systematic study on the parallel coupled system. It will be
discussed in detail in a future publication �46�.
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APPENDIX: CALCULATION OF THE CONDUCTANCE

We calculate the conductance using the nonlinear sigma
model with unitary symmetry, Eq. �33�. The first step to do is

FIG. 9. �Color online� Conductance distribution function for
unitary system for several values of p=1/��.
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to represent the conductance as an integral of the � matrix.
This is the standard prescription discussed in detail in Ref.
�16� and we have

	
S12
2� =�str�k
1 + �

2
K̃

1

1 + i�K̃
�

12

� str�k
1 − �

2
K̃

1

1 + i�K̃
�

21


F

+�str�k
1 + �

2
K̃

1

1 + i�K̃
�

11

� �k
1 − �

2
K̃

1

1 + i�K̃
�

22


F

, �A1�

where k=diag�1,−1� in superspace, 	 �F denotes the integra-
tion over � with the weight e−F, and

K̃ =
1

E − E1
	1 −

i�

N�
	2� =

1

�
� −

iX

2
� . �A2�

In the second line we used a=0.
The second step is to parametrize the supermatrix �. We

use �32�

� = U�0Ū ,

�0 = � cos �̂ i sin �̂

− i sin �̂ − cos �̂
�

RA

,

U = �u 0

0 v
�

RA
, �A3�

where

�̂ = �i�B 0

0 �F
�

BF
, �A4�

and the integration range is given by 0��B�� and 0��F
��. U includes the anticommuting Grassmann variables and
can be written as

u = u1u2,

u1 = exp� 0 i�

− i�* 0
�

BF
,

u2 = �ei�1 0

0 ei�2
�

BF
,

v = exp� 0 �

− �* 0
�

BF
, �A5�

where � and � are Grassmann variables and the range of the
real variables �1,2 is given by 0��1,2�2�. The invariant
measure of this parametrization is

D� = Cd�Bd�Fd�1d�2d�d�*d�d�* sinh �B sin �F

�cosh �B − cos �F�2 ,

�A6�

where C is the normalization constant. In this parametriza-
tion, we can write

e−F =
�1 − �T1/2��1 − cos �F���1 − �T2/2��1 − cos �F��

�1 + �T1/2��cosh �B − 1���1 + �T2/2��cosh �B − 1��
.

�A7�

The last step is to carry out the integrations. This calcu-
lation is cumbersome although it is a straightforward task.
The first term in Eq. �A1� includes the mean part g0. It is
easily obtained by substituting �=�. The fluctuation correc-
tion is obtained from the integral

1

16
�

1

�

ds1�
−1

1

dse−F

� �T1
1 − �T1/2��1 + X/2�

�1 + �T1/2��s1 − 1���1 − �T1/2��1 − s��

− T2
1 − �T2/2��1 + X/2 + �2/X��1/�2 + i/���
�1 + �T2/2��s1 − 1���1 − �T2/2��1 − s��

�2

. �A8�

In the same way, the second term in Eq. �A1� is reduced to

1

16
�

1

�

ds1�
−1

1

ds
1

�s1 − s�2e−F

� �� T1

1 + �T1/2��s1 − 1�
+

T2

1 + �T2/2��s1 − 1��2

�s1
2 − 1�

+ � T1

1 − �T1/2��1 − s�
+

T2

1 + �T2/2��1 − s��2

�1 − s2�� .

�A9�

We note that these expressions are obtained after integrating
the Grassmann variables and changing the variables as s1
=cosh �B and s=cos �F. A careful manipulation is required to
carry out the remaining integrals. After lengthy calculations
we can obtain Eq. �34�.

It is a straightforward task to include the dephasing effect
described by the dephasing term �51�. In the present param-
etrization, it can be written as

F� =
2

��
�s1 − s� , �A10�

and is incorporated in the integrals in Eqs. �A8� and �A9� as
e−F�. Although we do not show the analytical result explic-
itly, it is not difficult to carry out the integrals. At the limit

E−E1
→�, we can find the result of Ref. �18�.
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